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Chapter 1

Large Language Models

In this article, we explore the architecture and implementation of Large Language Models
(LLMs), and Vision-Language Models, a subset of Multi-modal Models. We focus on the
design and inference of these systems, briefly explaining training techniques and datasets.
This chapter is dedicated to LLMs, with subsequent chapters delving into multi-modal
models that integrate visual and textual inputs.

1.1 Architectural Overview

Figure 1.1 illustrates the typical architecture of a large language model (LLM), such
as LLaMA [9] and Qwen [10, 15]. The process begins by converting the input into a
sequence of embedding vectors. These embeddings then pass through multiple decoder
layers, each consisting of a self-attention mechanism followed by a feed-forward network.
After processing through the stack of decoder blocks, a linear transformation projects the
output into a logits space, corresponding to the vocabulary. A sampling method is applied
to these logits to determine the next token in the sequence. This iterative process repeats
with the inclusion of each new token.

1.1.1 Essence of Self-Attention Mechanism

At the heart of LLMs lies the self-attention mechanism, which allows the model to dy-
namically weigh the relevance of each token in the input sequence relative to all others
when making predictions. This enables the model to focus on pertinent parts of the input
as it generates output.

In the self-attention layer, an input list of vectors X = {x1, x2, . . . , xn}—where each
vector xi corresponds to a token from the input—is transformed into an output list of
vectors Y = {y1, y2, . . . , yn}. The transformation is guided by the attention weights
calculated between every pair of input vectors.

For causal LLMs, the self-attention mechanism adheres to the sequential order of
tokens, ensuring that a given vector can only attend to itself and preceding vectors in the
sequence. For example, the first token’s vector x1 can only consider itself, whereas the
second token’s vector x2 can take into account both x1 and itself.

Projection of Input Vectors

Each input vector ai is projected into three separate spaces to obtain the corresponding
query qi, key ki, and value vi vectors:

1
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Fig. 1.1: Typical LLM architecture.

qi = aiWQ

ki = aiWK

vi = aiWV

(1.1)

where WQ, WK , and WV are trainable projection matrices, and all vectors are expressed
as row vectors by default in this article.

Positional Encoding with Rotary Embeddings

Rotary positional embeddings are applied to the query and key vectors after their linear
projections, encoding relative positions essential for sequence-dependent tasks. Value
vectors do not receive rotary embeddings. See Appendix A for implementation details.

Computation of Attention Weights

The attention weight from vector vj to vector vi is computed as follows:

Attention(qj , ki) = exp(qj · kT
i /

√
dh)∑n

t=1 exp(qj · kT
t /

√
dh)

(1.2)

where n in the input sequence length, qj and ki are the query and key vectors, respectively.
dh is key head size. For example, if there are 8 attention heads, dh will be 1/8 of the
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Original Transformer LLaMA

Self-attention Mechanism Multi-head Grouped multi-query
Input Embedding Size Fixed Varies with model size
Normalization Layer normalization RMS normalization
Positional Encoding Fixed positional encoding Rotary positional encoding
Activation Function ReLU SiLU

Table 1.1: Comparison between the original transformer and LLaMA Architectures. See Appendix B.1
for explanation of layer normalization, and Appendix B.2 for ReLU and SiLU activation functions.

embedding dimension. The dot product is scaled by the square root of dh to stabilize
gradients during training. The softmax function converts the raw attention scores into a
probability distribution.

1.2 Model Implementation

The model implementation is detailed in the following.

1.2.1 Chat template and tokenization

A tokenizer converts splits a text into words or subwords, which then are converted to IDs
through a look-up table. The most used tokenizer for causal lanuage models is Byte-Pair
Encoding (BPE) which is used in LLama-3 serials, Qwen-2 serials and Phi-3 serials.

The Huggingfacetokenizers library is written in Rust 1.

1.2.2 Architecture

The comparison with the original transformers is shown in Table 1.1.

The grouped multi-query, i.e. repeating some k and v heads for the q heads, achieves
a balance between speed and quality. The implementation details for positional encoding,
layer normalization, and activation functions are provided in the appendices.

1.2.3 Implementation Details

The following steps outline the inference process for the LLama model implemented in
the transformers library from Hugging Face.

1https://github.com/huggingface/tokenizers
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Step 1: Loading Pretrained Model and Tokenizer. Load the pretrained LLaMA
model and tokenizer. For batch processing of input messages with varying lengths, padding
is essential. Since LLaMA is a decoder-only architecture, it requires left padding, differ-
ent from the default right padding in AutoTokenizer. Set padding_side="left" when
instantiating the tokenizer. This step results in an instantiated and initialized tokenizer
and model.

Step 2: Applying the Prompt Template. Transform the user’s input text by
applying a predefined template that includes system prompts, potential generation in-
structions, and the user’s message, all separated by delimiter tokens. The formatted
output may resemble:

<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHi
<|eot_id|>|start_header_id|>assistant<|end_header_id|>\n\n

Step 3: Tokenization. Tokenize the input text into tokens and convert each token
into its corresponding ID from the vocabulary. Padding is added to the batch as necessary
to ensure uniform sequence length. The result is a tensor of shape (b, n), where b is the
batch size and n is the maximum sequence length in the batch.

Step 4: Embedding Generation. Generate embeddings for the input tokens using
the embedding matrix of shape (nv, d), where nv is the vocabulary size and d is the
embedding dimension. Input: input token IDs of the shape (b, n). Output: embeddings
of the shape (b, n, d)

Step 5: Self-attention.

Input embeddings undergo RMS normalization. For a input tensor (vector) a with a
shape (d, ), the RMS normalization is defined as (a/

√
a2/n)Wrms

T . Wrms is the RMS
normalization weight with the same shape as a. See Appendix B.1 for details.

The normalization is followed by linear projections through WQ, WK and WV matrices
to produce Q, K and V (see Equation 1.1). In the case of the llama-3.2B model, the
hidden size d = 2048, the head size dh = 64 and the number of heads for k and v is 8.

After reshaping and transpose, the shapes are:

• Q: (b, d/dh, n, dh)

• K and V : (b, nkvHeads, n, dh)

In case of the 1b model, the tensor shapes are:

• Q: (b, 32, n, 64)

• K and V : (b, 8, n, 64)
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Rotary positional embeddings are then applied to the Q and K tensors to incorporate
position information. These embeddings consist of a pair of tensors for cosine and sine
components, each with a shape of (1, n, dh). To ensure that the key and value tensors
match the dimensions of the query tensor, K and V are expanded along the second
dimension (dim=1). In case of the 1b model, they are repeated four times (8 × 4 = 32).

Subsequently, the attention weights are calculated using Equation1.2, and the resulting
attention scores are used to compute the weighted sum of the value vectors, producing
the hidden states. The initial shape of the hidden states is (b, d/dh, n, dh), but after
concatenating across all heads, it becomes (b, n, d).

A final linear transformation with the matrix Wo is applied to the concatenated hidden
states, preserving the output shape as (b, n, d). Lastly, the original input embeddings are
added to the transformed hidden states as part of the residual connection (see Figure 1.1),
maintaining the same shape throughout.

Step 6: Feed-forward Network (FFN).

Apply another RMS normalization, followed by the FFN as described below:

Hout = [silu(HinWgate) ⊙ Wup)]Wdown

where ⊙ denotes element-wise multiplication, and the weight shapes are:

• Wgate and Wup: (4d, d)

• Wdown: (d, 4d).

It’s important to note that in PyTorch, the shape of a weight matrix is defined as
(in_features, out_features). The gating mechanism controls the contribution of Wup to
the final output, allowing the model to modulate information flow.

The output of the FFN has the same shape as the input, (b, n, d), and is added to the
tensor before the RMS norm as part of the residual connection (see Figure 1.1).

Step 7: Repeating Decoder Layers. Steps 5 and 6 together form a single decoder
layer. This layer is repeated N times; for the 1B model, it is repeated 16 times.

Step 8: Final RMS Normalization. Apply a final RMS normalization without
changing the tensor’s shape.

Step 9: Linear Transformation to Logits. A linear transformation maps the last
dimension from d to nv, the vocabulary size. The input shape is (b, n, d), and the output
shape is (b, n, nv), representing the logits for the next token prediction.

Step 10: Sampling the Next Token. Based on the logits, predict the next token.
With greedy search, the token with the highest probability (highest logit) is selected.
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Alternatively, sampling methods such as top-k or nucleus (top-p) sampling can be used
to introduce some randomness in the selection process.

Step 11: Generating Additional Tokens. Return to Step 4: Embedding Gen-
eration and continue generating new tokens until predefined stop tokens are encountered.
Decode the sequence of token IDs into a human-readable text string.

1.2.4 Parameter Analysis

Table 1.2 outlines the layers and parameters for typical LLMs. The specific configurations
for the LLaMA-3.2-1B model and the Qwen2.5-1.5B model are presented in Table 1.3.
The parameter values for those two models are detailed in Table 1.4.

Table 1.2: Model Layers and Parameters for typical LLMs (including LLaMA and Qwen). nv: vocabulary
size; d: embedding dimension (also called hidden size); nkvheads: number of key/value heads; nh: number of
attention heads; nlayers: number of decoder blocks (self-attention + FFN); dh: Head dimension, dh = d/nh

.

Layer name Repeti-
tion

Weight shape # Parameters

Embedding
generation

1 (nv , d) nv · d

RMS norm nlayers (d, ) d

Attention layer nlayers

WQ: (d, d)
WK : (d, nkvheads · dh)
WV : (d, nkvheads · dh)

Wo: (d, d)

2d2 + 2d · nkvheads · dh

d + 2nkvheads · dh if Bias

RMS norm nlayers (d, ) d

MLP layer nlayers

Wgate: (dinter, d)
Wup: (dinter, d)

Wdown: (d, dinter)
3dinter·

RMS norm 1 (d, ) d
LM Head 1 (nv , d) nv · d

Table 1.3: Model configurations for the LLaMA-3.2-1B and Qwen2.5-1.5B Model.

Configuration LLaMA-3.2-1B Qwen2.5-1.5B
nv 128,256 151,936
d 2048 1536

nkvheads 8 2
dinter 8192 8960

dh 64 128

1.2.5 Implementation Enhancements

A few optimizations are essential for enabling real-time and interactive applications of
LLMs, including Key-Value (KV) cache and the implementation of efficient attention
masking.

1.2.5.1 Key-Value Cache

In the implementation of LLMs, the utilization of a Key-Value (KV) cache is a critical
optimization technique. When generating a new token, instead of reprocessing the entire
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Table 1.4: Model Layers and Parameters for the LLaMA-3.2-1B and Qwen2.5-1.5B Model. See 1.3 for
model configurations.

Layer name LLaMA weight LLaMA params Qwen weight Qwen params
Embedding
generation

(128256, 2048) 262,668,288 (151936, 1536) 233,373,696

RMS norm (2048, ) 2048 × 16 (1536,) 1536 × 28

Attention layer

WQ: (2048, 2048)
WK : (512, 2048)
WV : (512, 2048)
Wo: (2048, 2048)

10, 485, 760 × 16

WQ: (1536, 1536)
BiasQ: (1536, )
WK : (256, 1536)
BiasK : (256, )

WV : (256, 1536)
BiasQ: (256, )

Wo: (1536, 1536)

5, 507, 072 × 28

RMS norm (2048, ) 2048 × 16 (1536, ) 1536 × 28

MLP layer
Wgate: (8192, 2048)
Wup: (8192, 2048)

Wdown: (2048, 8192)
50, 331, 648 × 16

Wgate: (8960, 1536)
Wup: (8960, 1536)

Wdown: (1536, 8960)
41, 287, 680 × 28

RMS norm (2048, ) 2048 (1536, ) 1536
LM Head (128265, 2048) 262,668,288 (151936, 1536) 233,373,696
Total - 1,498,482,688 - 1,777,088,000

sequence of tokens up to that point, one can leverage the KV cache to store the key (K)
and value (V ) matrices from previous computations.

Given the self-attention mechanism, where each token’s representation is updated
based on its interactions with all other tokens in the sequence, the KV cache specifi-
cally stores the K and V vectors associated with past tokens. For a newly generated
token, only the K and V vectors corresponding to this token need to be computed and
added to the cache. The attention scores are then calculated using the cached K and V
values and the query (Q) vector of the new token, as shown in Equation 1.2.

It’s important to distinguish between the K and V in the context of self-attention and
the “keys” and “values” used in dictionary data structures.

For multi-turn dialogues or conversations, managing the KV cache requires careful han-
dling. New conversation turns may introduce delimiter tokens and generation tokens so the
new tokens are not simply appended to the end of the input sequence. For instance, in the
chat template used by Qwen2, the input always ends with “<|im_start|>assistant\n”.
This means that tokens for the new conversation round are not necessarily the last tokens
in the sequence. To address this, the system must implement logic to accurately identify
the boundaries of new conversation segments and update the KV cache accordingly.

Unlike in single-round conversations 2, the management of the KV-cache is not handled
by the transformers library and is addressed at the deployment platform level.

1.2.5.2 Efficient Attention Masking

Causal generation in LLMs ensures that each token can only attend to itself and the
tokens that precede it, preventing future-looking attention. This is achieved through the
application of an attention mask.

2https://huggingface.co/docs/transformers/en/kv_cache
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The masking operation is executed by adding a mask matrix to the raw attention
scores before applying the softmax function. The mask matrix has the same shape as the
attention score matrix and contains −∞ for positions that should be masked out and 0
elsewhere. The elements of the mask matrix MM are defined as follows:

Mij =
{

0 if i ≥ j

−∞ if i < j

In practice, a very large negative number is used instead of −∞ to maintain numerical
stability. The resulting equation for computing the masked attention is given by:

MaskedAttention(Q, K, V, M) = softmax
(

QKT + M√
dh

)
V

Where M is the mask matrix. By adding the mask before the softmax, one avoids
unnecessary multiplications by zero, leading to a more efficient computation.



Chapter 2

Multi-modal Large Language Models

In this chapter, we focus on Multi-modal Large Language Models (MLLMs), which inte-
grate capabilities for processing both visual and textual data. These models are sometimes
referred to as Vision-Language Models (VLMs). It is important to note that our discussion
excludes certain specialized models such as CLIP and BLIP, which, while related, have
distinct architectures and purposes. For the sake of simplicity, we will refer to the models
under consideration as VLMs throughout this text.

Typically, a VLM architecture comprises three key components: a Large Language
Model (LLM), a vision encoder and a projector (see Figure 2.1). The LLM component is
responsible for understanding and generating human language, while the vision encoder
processes images or video frames. The projector aligns the features extracted by the vision
encoder to the LLM.

Fig. 2.1: VLM architecture. A decoder layer consists of a self-attention block and a feed-forward network
(see Figure 1.1 for details).

2.1 Vision encoder

In this section, we explore the architecture of a typical vision encoder, which often utilizes
the Vision Transformer (ViT) framework [6]. Figure 2.2 illustrates this architecture.

We detail the implementation process for the Qwen2-VL model, specifically its 2B vari-
ant, when referring to concrete model parameters. However, the described principles are
broadly applicable to other vision-language models.

Step 1: Apply Text Template.

9
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Fig. 2.2: A typical vision encoder architecture, where the encoder block (self-attention and MLP layers)
is repeated N times. The patch merger serves as a projector, aligning the extracted visual features with
the LLM.

Refer to Chapter 1 for detailed instructions. A dummy token is reserved as a place-
holder for subsequent image insertion.

Step 2: Load and Pre-process the Image.

• Convert the image to RGB format if it isn’t already.

• Resize the image such that both its height and width are divisible by the multipli-
cation of the patch size dpatch and merge size nmerge. For the 2B model, the patch
size dpatch = 14 and nmerge = 2.

• Normalize the image using predefined mean and standard deviation values.

• Transpose the image tensor to (C, H, W ).

Step 3: Prepare Image Patches.

The image is divided into smaller patches. Key parameters include:

• Grid Sizes: Denoted by tgrid (temporal grid size), hgrid (grid size along height), and
wgrid (grid size along width).

• Patch sizes: dt_patch along the temporal axis, and dpatch along the height and width
axes.
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• Merge Size: nmerge defaults to 2, meaning two patches are merged into one along
all three axes (temporal, height, and width).

The relation between the image height/width and the parameters above is

h = hgrid × dpatch

w = wgrid × dpatch

For an input image with shape (C, H, W ):

• Temporal duplication: Duplicate and tile the image along the temporal axis to create
a shape of (2, C, H, W ), where tgrid = 1 and dt_patch = 2.

• Tensor reshaping: Reshape the tensor to

(tgrid, dt_patch, C, hgrid/nmerge, nmerge, dpatch, wgrid/nmerge, nmerge, dpatch).

Example: An input image with dimensions (3, 224, 224) (3 color channels) results in a
reshaped tensor of

(1, 2, 3, 8, 2, 14, 8, 2, 14).

An image is divided into a grid of hgrid and wgrid patches, where each patch has
dimensions of dpatch. These patches are further organized into groups of nmerge, facilitating
their subsequent merging process.

Step 4: Transpose and reshape the image tensor.

The image tensor channels are permuted to facilitate subsequent convolution and en-
coding operations:

(tgrid, hgrid/nmerge, wgrid/nmerge, nmerge, nmerge, C, dt_patch, dpatch, dpatch).

Continuing the example, the tensor shape becomes

(1, 8, 8, 2, 2, 3, 14, 14, 14).

Step 5: Prepare image tokens.

Expand the token placeholders for the image. Initially, when we apply the chat tem-
plate, we only left one placeholder for the image. Now we can compute the actual number
of needed tokens. The actual number is

Expand the token placeholders for the image. Initially, only one placeholder was left
when applying the text template. Calculate the actual number of required tokens:
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number of image tokens = tgrid · hgrid · wgrid

n2
merge

Tokenize both the text message and the image placeholder tokens.

Step 6: 3D convolution.

• Reshape the image tensor channels to

(tgrid · hgrid · wgrid, C, dt_patch, dpatch, dpatch).

• Apply a 3D convolution.

Convolution parameters:

• Input channels C: The color channel, always 3.

• Output channels dimg: The image embedding dimension, configured beforehand; for
the 2B model, this is 1280.

• Kernel: (nt_patch, npatch, npatch)

• Stride: Equal to the kernel size, i.e., (nt_patch, npatch, npatch)

The resulting hidden states has a shape of (nimg, dimg) or, in our example, (256,1280).
Here, nimg is the token number before merging.1

Step 7: Positional embedding.

To preserve the spatial structure of image patches, which is lost when they are flattened
into a sequence, positional embeddings are used to provide positional information.

• Rotary Positional Embeddings (RoPE): Used in Models Like Qwen-VL: RoPE en-
codes relative positions by rotating embedding vectors using sine and cosine func-
tions [13]. This dynamic approach allows the model to maintain relative position
information even when absolute positions change, making it flexible for varying input
sizes.

• Trainable Positional Embeddings: Used in Models Like InternVL: These embeddings
are learned during training and added to the input patch embeddings. They can
capture complex spatial patterns but require knowing the number of image tokens
in advance.

Step 8: Self-attention.
1Some models, such as InternVL [4], incorporate a class token independent of the input image, appar-

ently inspired by LLM classification tasks.
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• Layer normalization without changing the shape.

• Project the input tensor from (nimg, dimg) to query (q), key (k), and value (v) tensors
of shape (nimg, nh, dh). Parameters:

– nh: Number of attention heads (16 for the 2B model).
– dh: Head dimension (80 for the 2B model).

Rotary embeddings are applied to q and k to incorporate positional information. Trans-
pose q, k, and v to (nh, n, dh) (see Eq. 1.1), compute multi-head self-attention, concatenate
the heads, and transform again using Wo. The output shape is (nimg, dimg).

Step 9: Multi-Layer Perceptron (MLP)

• Apply another layer normalization.

• Pass through an MLP layer with weights:

– W1: Shape (mlp_ratio · dimg, dimg)
– W2: Shape (dimg, mlp_ratio · dimg)

In out example, W1 is (5120,1280) and W2 is (1280,5120). Both linear layers include
bias terms. A QuickGELUActivation function is used between the linear operations.
Add a residual connection by summing the result with the hidden states before this MLP
layer. The output shape remains (nimg, dimg) or, in our example, (256, 1280).

Step 10: Repeat Encoder Blocks.

Repeat the sequence of self-attention and MLP layers (Steps 8–9) for all blocks. The
2B model contains 32 such blocks.

Step 11: Patch Merging.

• Layer normalization without altering the shape.

• Reshape the tensor to (nimg/n2
merge, n2

merge · dimg)

The features for every patches are merged and concatenated, and they pass through
two linear transformations:

For each set of nmerge × nmerge patches, the features from the four patches are merged
and concatenated, then passed through two linear transformations:

• First transformation: Shape (n2
merge · dimg, n2

merge · dimg)

• Second transformation: Shape (d, n2
merge · dimg)
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Where d is the text token embedding size. Both transformations include bias terms.
Use GELU activation between them. The final output shape is (nimg/n2

merge, d) or, in our
example, (64, 1536).

2.2 Parameter Analysis

The model configuration for a Qwen2-VL-2B model and InternVL2-2B are detailed in
Table 2.1. Their parameters are detailed in Table 2.2.

Table 2.1: Configurations for the vision encoder and project components in the Qwen2-VL-2B and
InternVL2-2B Model.

Configu-
ration

Description Qwen2-VL-2B InternVL2-2B

dimg Image embedding dimension
(vision hidden size)

1280 1024

Class token Whether to use for image en-
coder

No Yes

Position
embed-
dings

Whether trainable for image
encoder

No Yes

d Token embedding dimension
(LLM hidden size)

1536 2048

dpatch Patch size along height and
width

14 14

dt_patch Temporal patch size 2 1
nmerge Number of patches along each

dimension to be merged after
encoder blocks

2 2

Encoder
repetitions

Number of image encoder
blocks

32 24

Scaling
residual

Apply a factor when adding
residual connection

No Yes
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Table 2.2: Model Layers and Parameters for vision encoder and project components in the Qwen2-VL-2B
and InternVL2-2B Model. See 2.1 for model configurations.

Layer name Qwen2-VL weight/bias Qwen2-VL
params

InternVL2 weight InternVL2
params

Convolution (1280, 3, 2, 14, 14) 1,505,280 Weight: (1024, 3, 14, 14)
Bias: (1024, ) 603,136

Class embed-
ding

None 0 (1, 1024) 1024

Positional em-
bedding

None 0 (1025, 1024) 1,049,600

Layer norm weight: (1280, )
bias (1280, ) 2560 × 32 Weight: (1024, )

Bias (1024, ) 2048 × 24

Attention layer

Wqkv : (3840, 1280)
Biasqkv : (3840, )
Wo: (1280, 1280)
BiasO: (1280, )

6, 558, 720 × 32

Wqkv : (3072, 1024)
Biasqkv : (3072, )
Wo: (1024, 1024)
BiasO: (1024, )

Residual factor: (1024, )

4, 198, 400 × 24

Residual scale None 0 (1024, ) 1024 × 24

Layer norm Weight: (1280, )
Bias (1280, ) 2560 × 32 Weight: (1024, )

Bias (1024, ) 2048 × 24

MLP layer

W1: (5120, 1280)
Bias1: (5120, )

W2: (1280, 5120)
Bias2: (1280, )

13,113,600×32

W1: (4096, 1024)
Bias1: (4096, )

W2: (1024, 4096)
Bias2: (1024, )

Residual factor: (1024, )

8, 393, 728 × 24

Residual scale None 0 (1024, ) 1024 × 24

Layer norm weight: (1280, )
bias (1280, ) 2560 weight: (4096, )

bias: (4096, ) 8192

Merger MLP

Wmerger1: (5120, 5120)
Biasmerger1: (5120, )

Wmerger2: (1536, 5120)
Biasmerger2: (1536, )

34,085,376

Wmerger1: (2048, 4096)
Biasmerger1: (2048, )

Wmerger2: (2048, 2048)
Biasmerger2: (2048, )

12,587,008

Total 665,271,296 316,607,488
Total incl.
LLM

2,442,359,296 2,205,754,368



Chapter 3

Training of Large Language Models

This chapter delves into the training process of large language models (LLMs), using
Microsoft Phi-3 [1] as a case study. The methodologies discussed herein, however, can be
broadly applied to the training of various LLMs.

3.1 Pre-training: Establishing a Robust Foundation

It is crucial to maximize the utility of these models’ limited capacity by ensuring that
they are trained on high-quality, relevant data. Two primary types of datasets are com-
monly employed: web-based data that has been filtered using LLM-based techniques, and
synthetic datasets generated by LLMs themselves.

The pre-training phase is typically segmented into multiple stages, each with its own
objectives. For Phi-3, the initial stage aims to impart the model with general knowledge
and enhance its understanding of language. This is followed by a subsequent stage that
focuses on refining the model’s reasoning abilities.

3.2 Post-training: Specialization and Ethical Alignment

Post-training involves two critical stages: Supervised Fine-Tuning (SFT) and Direct Pref-
erence Optimization (DPO). SFT leverages high-quality, labeled datasets to boost the
model’s performance in specific domains or tasks. Meanwhile, DPO is designed to align
the model’s responses with user preferences (inluding appropriate chat format) and to
ensure adherence to Responsible AI principles.

3.2.1 Fine-tuning with Low-Rank Adaptation

Low-Rank Adaptation (LoRA) is an effective technique for fine-tuning LLMs that ad-
dresses some of the challenges associated with traditional fine-tuning methods. In conven-
tional fine-tuning, all parameters of the pre-trained model are updated, which can lead to
overfitting and require substantial computational resources. By contrast, LoRA modifies
only a small subset of the parameters, specifically those related to the low-rank matrices
A and B, where W = W0 + BAT represents the adapted weight matrix, with W0 being
the original weights.

Let us consider a layer in the LLM with input x ∈ Rd and output y ∈ Rd′ . The original
transformation can be represented as:

y = W0x,

16
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where W0 ∈ Rd′×d is the original weight matrix. With LoRA, this transformation becomes:

y = (W0 + BAT )x,

where A ∈ Rr×d and B ∈ Rd′×r are the low-rank matrices, and r << min(d, d′) is the
rank of the adaptation. The matrices A and B are learned during the fine-tuning process,
while the original weights W0 remain frozen.

The advantages are as follows:

• It reduces the risk of overfitting.

• It decreases computational cost and memory usage, enabling the fine-tuning of very
large models even on consumer-grade hardware.

Additionally, because the original weights W0 are not altered, the fine-tuned model
can retain much of the knowledge it has acquired during pre-training. This property is
particularly beneficial when working with domain-specific data that is limited in size.

3.3 Fine-Tuning with DeepSpeed

Training large-scale models, such as LLMs, can be computationally intensive and require
significant memory resources. The DeepSpeed library offers an efficient and scalable solu-
tion to fine-tune LLMs on consumer-grade hardware.

Zero Redundancy Optimizer

The DeepSpeed library provides the Zero Redundancy Optimizer (ZeRO), which can
be configured in different stages to optimize memory usage and parallelism. Instead of
replicating the optimizer states, gradients, and parameters on every GPU, ZeRO partitions
them so that each GPU holds only a portion of the full model state.

In ZeRO Stage 2, the optimizer states (such as momentum and variance in Adam)
are partitioned across GPUs. Each GPU is responsible for updating only a subset of the
model’s parameters, and the corresponding optimizer states are stored only on the GPUs
that own those parameters. During the backward pass, gradients are aggregated across all
GPUs, and then each GPU updates its owned parameters using its local optimizer states.

In ZeRO Stage 3, in addition to the optimizer states, the gradients and parameters
are divided among the GPUs. During training, communication between GPUs is required
to gather the necessary information for the forward and backward passes, as well as for
parameter updates.

CPU Offloading

In CPU offloading, by offloading certain components of the model to the CPU, the
overall memory footprint can be further reduced.
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In ZeRO Stage 2, CPU offloading can be used to move the optimizer states from the
GPU to the CPU after each update. During the next iteration, the optimizer states are
transferred back to the GPU as needed.

ZeRO Stage 3 takes CPU offloading by offloading also the gradients and parameters
to the CPU. However, this comes at the cost of increased data transfer times between the
CPU and GPU.

Best practices

To ensure efficient and effective fine-tuning with DeepSpeed, consider the following
best practices:

• Start with a Small Batch Size: Begin with a smaller batch size and gradually
increase it as you monitor memory usage and training stability.

• Use Mixed Precision: Enable mixed precision training (fp16) to reduce memory
consumption and speed up training.

• Leverage Gradient Accumulation: If your GPU memory is limited, use gradient
accumulation to simulate a larger batch size without increasing memory usage.

• Optimize Communication: Use ZeRO stages 2 or 3 to offload optimizer states
and partition model parameters.
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Appendix A

Positional Embeddings

In transformer-based language models, token embeddings do not inherently carry infor-
mation about a token’s position within a sentence. To address this limitation, positional
embeddings are introduced to encode the sequence order.

A.1 Absolute Positional Embedding

The original Transformer architecture [14] employs absolute positional embeddings, where
each position in the sequence is associated with a unique embedding. For the i-th position,
the embedding components are defined as:

Pi,2t = sin
(

i

100002t/d

)
Pi,2t+1 = cos

(
i

100002t/d

)

Here, t denotes the index within the embedding vector, and d represents the embedding
dimension or hidden size. This method encodes the absolute position but does not account
for the relative distances between tokens, which can be a significant drawback for certain
tasks.

A.2 Learnable Positional Embedding

An alternative approach involves learnable positional embeddings, where the position-
specific vectors are optimized during training. This strategy provides greater flexibility
and can adapt to the specific characteristics of the training data. It has been adopted
by models like BERT [5] and InternVL [4]. However, it requires a predefined maximum
sequence length and predefined embedding dimension, limiting its applicability in scenarios
with varying input lengths.

A.3 Rotary Positional Embedding

A more recent advancement is the Rotary Positional Embedding (RoPE) mechanism [13],
which has gained popularity in modern large language models (LLMs) such as LLaMA-3
[9] and vision-language models (VLMs) like Qwen-VL [3]. RoPE effectively captures the

A.1
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relative positions of tokens by applying rotations to the query and key vectors in the
attention mechanism.

Consider two tokens at positions m and n. When computing the attention score
between the m-th query vector and the n-th key vector, RoPE ensures that the resulting
dot product reflects the difference in their positions. This is achieved through the use of
rotation matrices, which have the property that the product of two rotations corresponds
to a single rotation by the sum of the angles.

Simplified Example with 2D Embeddings

For illustration, let’s assume an embedding dimension of 2. Given a rotation matrix R(α),
we have:

R(α)T = R(−α)
R(α)R(β) = R(α + β)

If we apply a rotation to two 2D embedding vectors qm and kn,

q′
m = qmR(mθ)

k′
n = knR(nθ)

where θ is a fixed angle independent of the token positions, the attention computation
becomes:

q′
mk′T

n = qmR(mθ)R(nθ)T kT
n

= qmR(mθ)R(−nθ)kT
n

= qmR(mθ − nθ)kT
n

This results in a rotation by the angle (m−n)θ, thereby encoding the relative position
of the tokens in the computed attention scores.

Geometrically, the rotation above can be understood as rotating around an angle mθ
and rotate in the opposite direction around nθ, so in the end we rotate mθ − nθ. Thus
we obtain the relative positional information in the computed attention.

Computation of rotation operation

For a 2D embedding vector q with elements q0 and q1, the rotated vector q′ is given by:
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q′
0 = q0 cos(mθ0) − q1 sin(mθ0)

q′
1 = q1 cos(mθ0) + q1 sin(mθ0)

Extension to Higher Dimensions

In practice, the embedding dimension d is much larger than 2 and typically even. We can
extend the rotation to higher dimensions by treating the embedding as a concatenation
of d/2 2D vectors. Each pair of elements (q2i−1, q2i) undergoes a rotation by an angle
θi = 10000−2i/d, where i ∈ [1, 2, ..., d/2].

The transformed embedding vector q′ can be expressed as:



q′
1

q′
2

q′
3

q′
4
...

q′
d−1
q′

d


=



q1
q2
q3
q4
...

qd−1
qd


⊙



cos mθ1
cos mθ1
cos mθ2
cos mθ2

...
cos mθd/2
cos mθd/2


+



−q2
q1

−q4
q3
...

−qd

qd−1


⊙



sin mθ1
sin mθ1
sin mθ2
sin mθ2

...
sin mθd/2
sin mθd/2


(A.1)

Implementation Considerations

In practical implementations, such as in PyTorch, the RoPE algorithm optimizes element
pairing for rotations to avoid altering the order of elements. Instead of pairing consecutive
elements like (qi, qi+1), the implementation pairs each element qi with its counterpart
qi+d/2, i.e., q1 with qd/2+1, q2 with qd/2+2, and so on.

This optimization leverages the fact that the elements within a hidden state do not
carry an intrinsic order; they are permutation-invariant. Therefore, reordering the pairs
does not affect the functionality of the RoPE mechanism while maintaining computational
efficiency.



Appendix B

Normalization and Activation

Two key components that significantly influence the training dynamics and ultimate ca-
pabilities of deep-learning models are layer normalization and activation functions. This
appendix delves into these concepts, focusing on their implementations within the context
of large language models (LLMs).

B.1 Layer Normalization

Layer Normalization was introduced by Ba et al. in [2] as a technique to mitigate the in-
ternal covariate shift within neural networks, thereby accelerating training. Unlike Batch
Normalization, which operates over batches of data and is commonly applied in convo-
lutional neural networks (CNNs) for vision tasks, Layer Normalization acts on the last
dimension of the input tensor, making it suitable for models with varying input sizes, such
as those used in natural language processing.

Given a tensor x, Layer Normalization computes the normalized output y as follows:

LayerNorm(x) = γ · x − µ

σ + ϵ
+ β

where µ and σ are the mean and standard deviation of x computed over the last dimension,
γ and β are learnable affine transformation parameters that allow per-channel scaling and
shifting, and ϵ is a small constant added to the denominator for numerical stability. This
normalization process can be seen as a form of standardization from statistics.

Layer Normalization is a crucial component in the architecture of the original Trans-
former model [14].

RMS Layer Normalization

While Layer Normalization offers significant benefits, its computational cost can be high
due to the calculation of the mean and variance. Zhang et al. [16] observed that the scaling
operation is more critical than the shifting for many applications. They proposed RMS
Layer Normalization (RMSNorm), a simplified variant that omits the mean subtraction
and only scales the input tensor by its root-mean-square (RMS):

RMSNorm(x) = x√
1
n

∑n
i=1 x2

i + ϵ
(B.1)

B.1
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where n is the number of elements in the tensor x along the specified dimension, and ϵ is
again a small constant for numerical stability. RMSNorm reduces the model’s complexity
and speeds up computation without significantly compromising performance.

RMSNorm has gained popularity in large language models (LLMs) such as LLaMA-3
[9] and Qwen2 [15], where efficiency and scalability are paramount.

B.2 Activation Functions

Activation functions introduce non-linearity into the model. In the context of LLMs and
Deep Learning models, several activation functions have gained prominence due to their
efficiency and performance. Among these, ReLU, SiLU, and GELU are widely adopted.
Moreover, some vision models, such as Qwen-VL [3], utilize QuickGELU, a variant of
GELU, for the vision part of the architecture.

Different activation functions are plotted in Figure B.1.

Fig. B.1: Comparison of Activation Functions - ReLU, SiLU, GELU, and QuickGELU.

ReLU (Rectified Linear Unit)

The ReLU function is one of the most commonly used activation functions in neural
networks. It is defined as:

f(x) = max(0, x)

This simple function outputs the input directly if it is positive, otherwise, it outputs
zero. Due to the constant gradient of 1 for all positive inputs, ReLU helps to mitigate the
vanishing gradient problem, which is common in networks with many layers [7]. However,
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it can lead to the “dying ReLU” problem, where neurons become inactive and always
output zero.

SiLU (Sigmoid Linear Unit)

Also known as the Swish function, SiLU is a smooth, non-monotonic function. It is defined
as:

f(x) = x · σ(x) = x

1 + e−x

where σ(x) is the sigmoid function. Unlike ReLU, SiLU is differentiable everywhere
and can output negative values for negative inputs, rather than always outputting zero.
By incorporating self-gating, i.e., multiplying the input by its sigmoid, it allows for more
flexible feature learning compared to ReLU [12].

GELU (Gaussian Error Linear Unit)

GELU is another non-linear activation function that is closely related to the cumulative
distribution function of a Gaussian [8]. It is defined as:

f(x) = x · Φ(x)

where Φ(x) is the standard Gaussian cumulative distribution function:

Φ(x) = 1
2

[
1 + erf

(
x√
2

)]

and erf is the error function1. The GELU activation function is computationally intensive,
but it can be approximated to improve computational efficiency.

QuickGELU

In some vision models, such as Qwen-VL [3], a computationally efficient approximation of
GELU called QuickGELU is used:

f(x) = x · σ(1.702x)
1erf(x) = 2√

π

∫ x

0 e−t2
dt
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where σ(x) is the sigmoid function. The factor 1.702 is chosen to approximate the shape
of the GELU function, making QuickGELU faster to compute while still retaining its
desirable characteristics [11].



Appendix C

Sampling Strategies in LLM Generation

LLMs predicts the next word in a sequence based on a probability distribution over the vo-
cabulary. To modulate the randomness of this process, three main sampling strategies are
commonly employed: temperature scaling, top-k sampling, and top-p (nucleus) sampling.

At the end of this appendix, we briefly introduce beam search, which is not commonly
used in practice.

Temperature Scaling

The temperature parameter adjusts the sharpness or flatness of the probability dis-
tribution. A lower temperature makes the model more confident but less creative.

Let yi denote the score (logit) for the i-th word, and let t be the temperature. The
adjusted probability for the i-th word is calculated as follows:

pi(t) = eyi/t∑
v∈V eyv/t

where V represents the vocabulary set. When t = 1, the probabilities remain unchanged.
As t < 1, the distribution becomes sharper, increasing the difference between high and low
probabilities. Specifically, as t infinitely approaches zero, the sampling becomes like greedy
decoding, where only the token with the highest probability is selected. Conversely, as
t > 1, the distribution flattens, making the choice more uniform. The temperature should
always be positive, typically within the range (0, 2].

Top-k Sampling

Top-k sampling limits the sampling space to only the top k most likely next words.
After adjusting the probabilities with the temperature, one selects the top k words with the
highest probabilities. When k = 1, this method is equivalent to greedy search, selecting
the most probable word at each step.

Top-p (Nucleus) Sampling

Top-p sampling, also known as nucleus sampling, selects the smallest set of words
whose cumulative probability exceeds a threshold p. This approach dynamically adjusts
the number of considered words, potentially leading to more diverse outputs compared to
fixed top-k sampling.

Given a sorted list of probabilities p1 ≥ p2 ≥ ... ≥ p|V |, one finds the smallest index j
such that the cumulative probability sum meets or exceeds topp:

C.1
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j∑
m=1

pm ≥ topp

The set of selected words consists of the first j words.

Final Sampling

After applying a combination of the above sampling methods, the probabilities of the
selected words are re-normalized to ensure they sum to 1. During the final sampling step,
a token is chosen according to its adjusted probability.

Beam Search

The beam search algorithm is a heuristic search method used to find the most probable
sequence of words by exploring multiple potential sequences at each step.

The process can be summarized as follows:

• Initialization: Begin with an initial set of top k highest-probability tokens, forming
the beam.

• Expansion: For each token in the current beam, generate possible continuations
by predicting the next token based on the context provided by the preceding tokens.
This results in a larger pool of candidate sequences.

• Pruning: Evaluate the likelihood of all candidate sequences and retain only the top
k sequences that have the highest cumulative probability. Less promising candidates
are discarded to control computational complexity.

• Iteration: Repeat the expansion and pruning steps until a termination condition
is met.

By evaluating multiple hypotheses simultaneously, beam search can possibly yields
more fluent and contextually appropriate sentences than just select the single best word
at each step. However, this approach comes with increased computational cost. There is a
risk that the optimal sequence might not be among the top k choices during an early stage
of the search, potentially leading to its premature exclusion from further consideration.
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