
Diffusion Models Unpacked

1 Denoising Diffusion Probabilistic Models

This section recaps the DDPM [1, 3].

1.1 Forward Diffusion

For each time step, define a weighting hyper-parameter βt (from 10−4 to 0.02 in the paper),
αt = 1− βt. According to Markov Chain,

xt =
√
αtxt−1 +

√
1− αtϵt−1 (1)

where ϵt ∼ N (0, I). While β increases in the process, more and more noises will be added.
xt can be computed directly from x0 with Reparameterization Sampling as

xt =
√
αtx0 +

√
1− αtϵ (2)

where αt = αtαt−1 . . . α1 and ϵt is noise following Gaussian Distribution.

Proof. Since xt−1 =
√
αt−1xt−2 +

√
1− αt−1ϵt−2, by inserting it to Equation 1, we obtain

xt =
√
αtαt−1xt−2 +

√
αt (1− αt−1)ϵt−2 +

√
1− αtϵt−1

Since both ϵt−2 and ϵt−1 follow N (0, I) and are independent 1 2,
the equation above can be re-written as

xt =
√
αtαt−1xt−2 +

√
1− αtαt−1ϵt−2

where ϵt−2 ∼ N (0, I). By continuing this deduction, we will get Equation 2.

1.2 Reverse Diffusion

In the reverse diffusion during training, q instead of p is used to denote the probability. The goal
of reverse diffusion is to compute q(x0|xT ). According to Bayes Theorem,

q (xt−1|xt) =
q (xt|xt−1) q (xt−1)

q (xt)
(3)

q(xt−1|xt) is posterior, q(xt|xt−1) is likelihood, q(xt−1) is prior and q(xt) is evidence.
Assuming we know x0, according to the forward diffusion Equation 1 and 2,

1 The sum of two independent random variables with Gaussian distributions also follows a Gaussian
distribution according to the convolution theorem.

2 V ar(cX) = c2V ar(X) where c is a constant and X is a random variable. For example,
V ar(

√
1− αtϵt−1) = (1−αt)V ar(ϵt−1). V ar(X+Y ) = V ar(X)+V ar(Y ), if random variables X and

Y are independent.
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q (xt−1|x0)∼ N
(√

αt−1x0, 1− αt−1

)
q (xt|xt−1, x0)∼ N (

√
αtxt−1, 1− αt)

q (xt|x0)∼ N
(√

αtx0, 1− αt

) (4)

It is noted that xt and x0 are known while xt−1 is unknown. Since q(xt−1|xt) ∼ N (0, I), we
only need to compute its expectation and variance to obtain its PDF 3. For the moment, we only
consider the exponential part4. The right side of the Bayes equation becomes

exp

{
−1

2

[
(xt −

√
αtxt−1)

2

βt
+

(
xt−1 −

√
αt−1x0

)2
1− αt−1

−
(
xt −

√
αtx0

)2
1− αt

]}
or

exp

{
−1

2

[(
αt

βt
+

1

1− αt−1

)
x2
t−1 −

(
2
√
αt

βt
xt +

2
√
αt−1

1− αt−1
x0

)
xt−1 + C (xt, x0)

]}
where C is a constant. The exponential part of a standard Gaussian is:

e−
(x−µ)2

2σ2 = e
− 1

2

(
1
σ2 x2− 2µ

σ2 x+µ2

σ2

)
By comparing the coefficients for x2

t−1 and for xt−1 in Equation 1.2 and 1.2, respectively, we
can compute the expectation and variance.

σ̃2
t =

βt (1− αt−1)

1− αt
(5)

µ̃t (xt, x0) =

√
αt (1− αt−1)

1− αt
xt +

√
αt−1βt

1− αt
x0

x0 can be computed from xt based on Equation 1, so

µ̃t =
1

√
αt

(
xt −

βt√
1− αt

ϵ

)
(6)

In Equation 5 and 6, the only unknown variable, the noise ϵ, will be found in the network.

1.3 Training

It can be proved that in order to optimize the likelihood of the value represented by Equation
3, the predicted noise generated by the network should be as close as possible to the noise ϵ as
defined in Equation 6. Hence, a network is required to train the value of ϵ. The training algorithm
is shown in Figure 1.

xt can be computed from x0, αt and a Gaussian distribution ϵ (see Figure 1b). Using the time
embedding and xt as input, a network ϵθ (typically a UNet variant) will predict ϵ. The algorithm
optimizes on a MSE loss (Step 5 in Algorithm 1). The model parameters are shared across all
time steps. Given the infinitesimal nature of each time step, utilizing the same prediction model
for ϵ at every step is reasonable.

3 According to Gaussian Bayesian, if the likelihood and prior are Gaussian, the posterior is also Gaussian.
4 The Probability Density Function for Gaussian distribution is

f (x|µ, σ) = 1

σ
√
2π

e
− (x−µ)2

2σ2
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(a) DDPM training algorithm [1].
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(b) Illustration of DDPM training.

Fig. 1: DDPM training.

1.4 Sampling

During sampling (for inference), xt is restored to xt−1, then to xt−2, and so on, until x0 is restored
(see Figure 2.

2 Image Generation

Here, we illustrate the process of generating images from text using DALL·E 2 (see Fig.3) [2],
focusing on the diffusion model.

The training process involves two key models: the prior and the decoder. The steps are:

1. A pre-trained CLIP model generates embeddings for input image.
2. The same CLIP model generates embeddings for input text.
3. The text embedding passes through a prior (“autoregressive or diffusion prior” in the original

paper), resulting in an image embedding. The image embedding generated in Step 1 serves
as the ground truth.

4. The decoder employs diffusion models to convert the image embedding from Step 3 into the
final image output.
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(a) DDPM training algorithm [1].

𝑁𝑒𝑡𝑤𝑜𝑟𝑘

… 

𝑥𝑡

𝜖

𝜖𝜃(𝑥𝑡, 𝑡) 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑥𝑡−1 𝜖𝜃(𝑥𝑡−1, 𝑡)

𝜖

(b) Illustration of DDPM training.

Fig. 2: DDPM training.

Fig. 3: High-level overview of DALL · E 2 [2].


